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Cosets

For a group G and a subgroup H ⊂ G , cosets are subsets of G of the
form gH and Hg for g ∈ G .

Let G act on a set X , pick a point x ∈ X and let Gx and Gx be its
orbit and stabilizer.

Lemma 1. The orbit Gx is in a natural bijection with the set of
cosets G/Gx = {gGx | g ∈ G}. In particular, for finite groups,
|Gx | = |G |/|Gx |.
Lemma 2. For any other point y ∈ Gx of the orbit of x , the
stabilizer of Gy is Gy = gGxg

−1 for some g ∈ G . In particular, for
finite groups, all the stabilizers of points from the same orbit have the
same number of elements.
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Polya’s Enumeration Theorem

Theorem

Suppose that a finite group G acts on a finite set X . Then the number of
colorings of X in n colors inequivalent under the action of G is

N(n) =
1

|G |
∑
g∈G

nc(g)

where c(g) is the number of cycles of g as a permutation of X .
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Proof of Polya’s Theorem

Theorem

The number of colorings of X in n colors inequivalent under the action of
G is

N(n) =
1

|G |
∑
g∈G

nc(g)

where c(g) is the number of cycles of g as a permutation of X .

Let Xn be the set of colorings of X in n colors. Then we want to
compute the number of G -orbits on Xn.

Let’s instead count the pairs (g ,C ) with C ∈ Xn a coloring and
g ∈ GC ⊂ G an element of G preserving C .

The orbit GC of C has |G |/|GC | elements (used Lemma 1).

Each element of GC will appear |GC | times (used Lemma 2).

Thus each orbit of Xn will appear |GC | · |G |/|GC | = |G | many times
in our counting. So to find N(n) need to divide the result by |G |.
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Proof of Polya’s Theorem

Want: to count pairs (g ,C ) with C being a coloring of X , and
g ∈ G preserving C .

For each g ∈ G , let’s count in how many pairs (g ,C ) is can appear,
i.e. we need to find for each g how many colorings are invariant under
g .

Decomposing X into orbits (=cycles) of g , we see that the color
along each cycle must be constant, and that’s the only restriction.

This gives nc(g) invariant colorings.

Summing over all g ∈ G and dividing by |G | gives the required
formula.
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Weighted Polya theorem

Let cm(g) denote the number of cycles of length m in g ∈ G when
permuting a finite set X .

Theorem (Weighted Polya theorem)

The number of colorings of X into n colors with exactly ri occurrences of
the i-th color is the coefficient of tr11 . . . trnn in the polynomial

P(t1, . . . , tn) =
1

|G |
∑
g∈G

∏
m≥1

(tm1 + · · ·+ tmn )cm(g)

The previous formula is obtained by putting t1 = · · · = tn = 1.

What is the number of necklaces with exactly 2 white and 2 black
beads? exactly 1 white and 3 black?
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(Peg) Solitaire board
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Solitaire rules

A move in the game consists of picking up a marble, and jumping it
horizontally or vertically (but not diagonally) over a single marble into
a vacant hole, removing the marble that was jumped over.
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The goal

The game is won by finishing with a single marble left on the board,
in the central hole.

Question: is it easier to win the game finishing at any spot on the
board?

In other words, are there more winning strategies if we relax the
winning condition?

Color spots on the board with non-trivial elements of Z/2× Z/2 so
that for any 3 consecutive positions (row or column) there are all
three elements (let’s call them f , g , h).

(We just re-denote f = (1, 0), g = (0, 1), h = (1, 1).)
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Filled board
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Main trick

Define total value of a board after some moves as the multiplication
of all the group elements sitting on the non-empty spots.

The value of the board does not change when doing moves!

So we should end up with a marble in a position labeled by h (15
possibilities).
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One more main trick

Observation: allowed moves are invariant under symmetries of the
board.

Thus, if there is a sequence of moves finishing in one spot, then there
is a sequence of moves finishing in a symmetric spot.

In other words, there is an action of the group D4 on the set of all
possible states of the board.

Thus we can only finish in the following spots:
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The end

If we finished the game in one of the 4 non-central positions. How
could that happen?

So we might have as well finished in the middle spot.
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Generalizations

What about Solitaire games of other shapes?

Figure: French Solitaire
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